AI และการเรียนรู้ของเครื่องสามารถตรวจจับพฤติกรรมการพนันที่มีความเสี่ยง
โดยการใช้ประโยชน์จากความก้าวหน้าในด้านปัญญาประดิษฐ์และการเล่าเรียนของเครื่องเพื่อสร้างอัลกอริทึมวิธีการทำนายในการพนันอย่างรับผิดชอบ ผู้ประกอบการคาสิโนสามารถลดอันตรายต่อผู้เล่นได้โดยการกำหนดค่าการขัดจังหวะการเล่นเมื่อตรวจพบพฤติกรรมที่มีความเสี่ยง ตามที่ผู้เชี่ยวชาญในAIกล่าว
Global Gaming Expo ได้สำรวจประเด็นนี้เมื่อสัปดาห์ที่แล้ว
ด้วยเซสชันเกี่ยวกับเทคโนโลยีที่มีศักยภาพช่วยเพิ่มความปลอดภัยและความสมบูรณ์ของการเล่นสำหรับผู้ใช้
วิธีหนึ่งที่สามารถทำได้ก็คือการสร้างแรงเสียดทานในรูปแบบของข้อความ อีเมล และการแจ้งเตือนแบบพุชไปยังผู้เล่นหรือเป็นการเตือนแบบบริการตนเองแก่ผู้เล่นเกี่ยวกับตัวเลือกการเล่นที่ปลอดภัยกว่า
Mike Reaves หัวหน้าฝ่ายสถาปัตยกรรมโซลูชั่นทั่วโลกในการเดิมพันและการเล่นเกมของ Amazon Web Services กล่าวว่าพวกเขาใช้แมชชีนเลิร์นนิงเพื่อตรวจจับพฤติกรรมปัญหาสำหรับการเล่นเกมและ พยายามเป็นอย่างยิ่งเพื่อความดี
Reaves กล่าวว่าขณะนี้พวกเขากำลังทำงานในสองระบบในพื้นที่การพนันและเกมเพื่อช่วยเหลือซัพพลายเออร์ผู้ประกอบกิจการและหน่วยงานควบคุมดูแลประการแรกก็คืออัลกอริทึมการทำนายที่ดูตัวบ่งชี้ที่แตกต่างกันรวมไปถึงข้อมูลบัญชีทางการเงินและข้อมูลการพนัน
พวกเราสามารถสร้างแบบจำลองการเล่าเรียนของเครื่องโดยใช้ข้อมูลของผู้ปฏิบัติงานเพื่อพยายามตรวจหาว่าพฤติกรรมการพนันอาจจะกลายเป็นปัญหาเมื่อใด รีฟส์กล่าวเมื่อเป็นแบบนั้น สิ่งที่เจ๋งที่สามารถทำได้ด้วยเทคโนโลยีในทุกวันนี้คือคุณสามารถแจ้งเตือนแบบเรียลไทม์เพื่อป้องกันไม่ให้เกิดอันตรายในเวลานั้นในสมัยก่อน คุณได้รับรายงานและเห็นว่าสูญหาย 10,000 ดอลลาร์ และคุณไม่สามารถทำอะไรได้มากนัก นอกเหนือจากโทรหาพวกเขาแล้วดูว่าพวกเขาเรียบร้อยแล้วและเสนอเครดิตให้พวกเขาหรือไม่
Reaves กล่าวว่า AWS ยังทำงานเกี่ยวกับโซลูชันการปรับแต่งส่วนบุคคลโดยใช้AIและการเรียนรู้ของเครื่องอย่างที่ผู้คนบางทีอาจเห็นใน Amazon Prime Video หรือไซต์อีคอมเมิร์ซ Amazon ซึ่งผู้คนได้รับคำแนะนำเกี่ยวกับสิ่งที่ควรซื้อ
เทคโนโลยีแบบเดียวกันนี้สามารถใช้สำหรับในการพนันและการพนันเพื่อเสนอการพนันที่ใครบางคนสนใจ รีฟส์กล่าวมีความสมดุลที่ดีระหว่างการให้คำแนะนำแก่ใครบางคนและการพยายามป้องกันการเล่นเกมที่มีปัญหา แม้กระนั้นพวกเรากำลังพยายามนำมาใช้แมชชีนเลิร์นนิงกับปัญหาประเภทนี้ทั้งหมดและระบุวิธีแก้ปัญหาที่มีประโยชน์
Paula Murphy ผู้จัดการฝ่ายพัฒนาธุรกิจที่ MindwayAIกล่าวว่า
การเรียนรู้ของเครื่องเป็นชุดย่อยของAIและสิ่งที่พวกเขาทำที่ Mindway เป็นสอนอัลกอริทึมเพื่อจำลองการตัดสินใจของคนเรา
สำหรับบางอย่างตัวอย่างเช่นการเดิมพันที่มีปัญหา พวกเราดูทุกๆ10 นาทีของการเล่นคาสิโนที่สมุดกีฬาและมือโป๊กเกอร์และรวบรวมรูปแบบพฤติกรรมที่มองดูไปที่เครื่องหมายเดียวกันบางส่วน เมอร์ฟี่กล่าวเหตุเพราะเราใช้นักจิตวิทยามนุษย์ผู้เชี่ยวชาญ พวกเขาสามารถนำการวิเคราะห์ตามบริบทที่คุณไม่สามารถรับได้ถ้าคุณกำลังดูไปที่เครื่องหมายพวกเรากำลังติดตามผู้เล่นเจ็ดล้านคนครึ่งอย่างต่อเนื่องสำหรับโอเปอเรเตอร์ที่พวกเราทำงานด้วย
Madeleine Want รองประธานฝ่ายข้อมูลของ Fanatics Sportsbook กล่าวว่าความยากลำบากสำหรับเพื่อการทำนายปัญหาการเดิมพันคือมันเป็น ปัญหาข้อมูลเริ่มด้วยคนที่บอกคุณว่าต้องมองหาอะไรโดยระบุผู้พนันที่มีปัญหาที่ได้รับการยืนยันจากอดีต
คุณสร้างเครื่องมือและอัลกอริทึมเพื่อเรียกใช้ผ่านฐานลูกค้าของคุณเอง Want กล่าวเราถาม ใครมีพฤติกรรมคล้ายกับคนที่เราอาจมองไม่เห็น?อะไรเป็นต้นสายปลายเหตุที่เกี่ยวข้องกันที่ทีมเล่นเกมแบบรับผิดชอบของเราไม่แนะนำอย่างเชิงรุก เนื่องจากพวกเขาไม่รู้ตัว?อย่างไรก็ตามอัลกอริทึมได้สังเกตเห็นพวกเขาและสามารถนำพฤติกรรมของลูกค้าบุคคลอื่นที่ตกผ่านรอยแตกเราเป็นคนใหม่ในพื้นที่นี้และอาศัยอยู่ในห้ารัฐกับแม่มีอีกมากมายที่จะมาอีกสิ่งหนึ่งที่แมชชีนเลิร์นนิงต้องการคือข้อมูลจำนวนมาก และเมื่อคุณไม่ได้อยู่มานานและอยู่ในกลุ่มย่อยเพียงเล็กน้อยเพียงแค่นั้น คุณไม่มีข้อมูลเพียงแค่พอที่จะฝึกโมเดลการเรียนรู้ของเครื่องที่หิวมาก
Want กล่าวว่าหนทางที่พวกเขาใช้ร่วมกับ AWS เป็นการสร้างกรอบการปฏิบัติงานของวิธีการป้อนข้อมูล เพื่อให้สามารถใช้สำหรับแบบจำลองดังกล่าวเมื่อพวกเขามีข้อมูลในปริมาณที่เพียงแต่พอ พวกเขาจะเปลี่ยนไปใช้วิธีการทำความเข้าใจของเครื่อง
อีกเหตุผลหนึ่งที่นี่เป็นปัญหาข้อมูลที่ยอดเยี่ยมแบบนี้เป็นเราใช้วิถีทางสำหรับการแปลสัญชาตญาณของคนเราเป็นกฎและบอกระบบว่าจะประพฤติตนอย่างไร Want กล่าวทั้งหมดนี้มีส่วนช่วยในการรวบรวมข้อมูลที่จะใช้เพื่อสำหรับการฝึกอบรมและให้แต้มแนวทางการเรียนรู้ของเครื่องในอนาคตข้อมูลเป็นส่วนประกอบขนาดเล็กหนึ่งมันคือสิ่งที่คุณทำกับข้อมูลนั้นเมื่อคุณมีข้อมูลที่เกิดขึ้น
Becky Harris อดีตประธานคณะกรรมการควบคุมการเล่นเกมเนวาดาและผู้มีชื่อเสียงด้านการเล่นเกมและการเป็นผู้นำที่สถาบันการเล่นเกมนานาชาติที่มหาวิทยาลัยเนวาดาลาสเวกัส กล่าวว่าหนึ่งในความท้าทายเป็นแอปพลิเคชันกลุ่มนี้ดำเนินการตามเขตอำนาจศาลตามเขตอำนาจศาลและการเลือกข้อมูลตามผู้ปฏิบัติงานที่ แตกต่างกันอย่างมากตราบจนกระทั่งอุตสาหกรรมจะสะดวกสบายมากขึ้นสำหรับในการใช้AIหน่วยงานกำกับดูแลเกมจะลังเลที่จะพึ่งพาสิ่งนั้น เธอกล่าว
เหมือนกับทุกอย่างในการพนันที่มีความรับผิดชอบและมีปัญหา เครื่องมือและเครื่องมือที่หลากหลายมีคุณประโยชน์มากขึ้นและเกิดเรื่องที่ดีที่จะสามารถระบุคนที่กระทำในลักษณะเฉพาะและช่วยแจ้งให้เราทราบ
แฮร์ริสกล่าวว่าทนายความในเธอมีคำถามเกี่ยวกับสิทธิพลเมืองของคนเราและสิ่งที่หน่วยงานกำกับดูแลยอมรับในด้านของการปิดตัวผู้เล่นออกมาจากกิจกรรมที่พวกเขาต้องการมีส่วนร่วม
นี่ยอดเยี่ยมในสภาพแวดล้อมมือถือแม้กระนั้นอุตสาหกรรมคาสิโนของพวกเราส่วนมากเป็นแบบภาคพื้นดิน ด้วยเหตุนี้แอปพลิเคชันสำหรับสิ่งนั้นอยู่ที่ไหน?แฮร์ริสกล่าวฉันสามารถเห็นการติดตามผ่านการ์ดของผู้เล่นและบางทีเทคโนโลยีนี้อาจมาถึงจุดที่มีโอกาสแบบเรียลไทม์ในAIเพื่อเจาะจงผู้ที่มีส่วนร่วมในพฤติกรรมที่เป็นอันตรายAIด้วยตัวเองไม่ใช่คำตอบเราจะต้องดูคันโยบายที่แตกต่างกันมากมายการสนทนาที่มีปัญหาการพนันไม่ควรเริ่มต้นและจบลงด้วยAIเราควรดู มันเข้ากับความตลอดที่ไหนและเรามีความมั่นใจมากแค่ไหน